软件开发定制【云原生&微服务八】Ribbon负载均衡策略之WeightedResponseTimeRule源码剖析(响应时间加权)

文章目录

一、前言

软件开发定制前置相关文章:

软件开发定制我们聊了以下问题:

  1. 为什么给RestTemplate软件开发定制类上加上了@LoadBalanced软件开发定制注解就可以使用Ribbon软件开发定制的负载均衡?
  2. SpringCloud软件开发定制是如何集成Ribbon的?
  3. Ribbon软件开发定制如何作用到RestTemplate上的?
  4. 软件开发定制如何获取到Ribbon的ILoadBalancer?
  5. ZoneAwareLoadBalancer(属于ribbon)如何与eureka整合,通过eureka client软件开发定制获取到对应注册表?
  6. ZoneAwareLoadBalancer软件开发定制如何持续从Eureka软件开发定制中获取最新的注册表信息?
  7. 如何根据负载均衡器ILoadBalancer从Eureka Client获取到的List<Server>中选出一个Server?
  8. Ribbon如何发送网络HTTP请求?
  9. Ribbon如何用IPing机制动态检查服务实例是否存活?
  10. Ribbon负载均衡策略之随机(RandomRule)、轮询(RoundRobinRule)、重试(RetryRule)、选择并发量最小的(BestAvailableRule)实现方式;

本文继续讨论 根据响应时间加权算法(WeightedResponseTimeRule)是如何实现的?

二、WeightedResponseTimeRule

WeightedResponseTimeRule继承自RoundRobinRule,也就是说该策略是对RoundRobinRule的扩展,其增加了 根据实例运行情况来计算权重 并根据权重挑选实例的规则,以达到更优的负载、实例分配效果。

下面我们一点点来看WeightedResponseTimeRule是如何实现根据相应时间计算权重并根据权重挑选实例的?

1、计算权重?

WeightedResponseTimeRule在初始化的时候会初始化父类RoundRobinRule,在RoundRobinRule的有参构造函数中会调用setLoadBalancer(ILoadBalancer)方法,WeightedResponseTimeRule类中重写了setLoadBalancer(ILoadBalancer)方法,在setLoadBalancer(ILoadBalancer)中会调用initialize(ILoadBalancer)对权重进行初始化、并定时更新。

public static final int DEFAULT_TIMER_INTERVAL = 30 * 1000;private int serverWeightTaskTimerInterval = DEFAULT_TIMER_INTERVAL;
  • 1
  • 2
  • 3

1)如何更新权重?

WeightedResponseTimeRule通过Timer#schedule()方法启动一个上一个任务结束到下一个任务开始之间间隔30s执行一次的定时任务为每个服务实例计算权重;

定时任务的主体是DynamicServerWeightTask

// WeightedResponseTimeRule的内部类class DynamicServerWeightTask extends TimerTask {    public void run() {        ServerWeight serverWeight = new ServerWeight();        try {            serverWeight.maintainWeights();        } catch (Exception e) {            logger.error("Error running DynamicServerWeightTask for {}", name, e);        }    }}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

DynamicServerWeightTask的run()方法中会实例化一个ServerWeight对象,并通过其maintainWeights()方法计算权重。

2)如何计算权重?

无论是权重的初始化还是权重的定时更新,都是使用ServerWeight#maintainWeights()方法来计算权重:

// WeightedResponseTimeRule的内部类class ServerWeight {    public void maintainWeights() {        ILoadBalancer lb = getLoadBalancer();        if (lb == null) {            return;        }        // CAS保证只有一个线程可以进行权重的计算操作        if (!serverWeightAssignmentInProgress.compareAndSet(false,  true))  {            return;         }                try {            logger.info("Weight adjusting job started");            AbstractLoadBalancer nlb = (AbstractLoadBalancer) lb;            LoadBalancerStats stats = nlb.getLoadBalancerStats();            if (stats == null) {                return;            }            // 所有实例的平均响应时间总和            double totalResponseTime = 0;            for (Server server : nlb.getAllServers()) {                // 汇总每个实例的平均响应时间到totalResponseTime上                ServerStats ss = stats.getSingleServerStat(server);                totalResponseTime += ss.getResponseTimeAvg();            }            // 计算每个实例的权重:weightSoFar + totalResponseTime - 实例的平均响应时间            // 实例的平均响应时间越长、权重就越小,就越不容易被选择到            Double weightSoFar = 0.0;                        List<Double> finalWeights = new ArrayList<Double>();            for (Server server : nlb.getAllServers()) {                ServerStats ss = stats.getSingleServerStat(server);                double weight = totalResponseTime - ss.getResponseTimeAvg();                weightSoFar += weight;                finalWeights.add(weightSoFar);               }            setWeights(finalWeights);        } catch (Exception e) {            logger.error("Error calculating server weights", e);        } finally {            // 表示权重计算结束,允许其他线程进行权重计算            serverWeightAssignmentInProgress.set(false);        }    }}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48

方法的核心逻辑:

  1. LoadBalancerStats中记录了每个实例的统计信息,累加所有实例的平均响应时间,得到总平均响应时间totalResponseTime
  2. 为负载均衡器中维护的实例列表逐个计算权重(从第一个开始),计算规则为:weightSoFar + totalResponseTime - 实例的平均响应时间
  3. 其中weightSoFar初始化为零,并且每计算好一个权重需要累加到weightSoFar上供下一次计算使用;

3)例证权重的计算

举个例子,假如服务A有四个实例:A、B、C、D,他们的平均响应时间(单位:ms)为:10、50、100、200。

  • 服务A的所有实例的总响应时间(totalResponseTime)为:10 + 50 + 100 + 200 = 360
  • 每个实例的权重计算规则为:总响应时间(totalResponseTime) 减去 实例的平均响应时间 + 累加的权重weightSoFar,具体到每个实例的计算如下:
  1. 实例A:360 - 10 + 0 = 350(weightSoFar = 0)
  2. 实例B:360 - 50 + 350 = 660(weightSoFar = 350)
  3. 实例C:360 - 100 + 660 = 920(weightSoFar = 660)
  4. 实例D:360 - 200 + 920 = 1080(weightSoFar = 920)

这里的权重值表示各实例权重区间的上限,以上面的计算结果为例,它为这4个实例各构建了一个区间:

  1. 每个实例的区间下限是上一个实例的区间上限;
  2. 每个实例的区间上限是我们计算出的并存储于在List<Double>类型的accumulatedWeights变量中的权重值,其中第一个实例的下限默认为零。

所以,根据上面示例的权重计算结果,我们可以得到每个实例的权重区间:

  1. 实例A:[0,350](weightSoFar = 0)
  2. 实例B:(350, 660](weightSoFar = 350)
  3. 实例C:(660, 920](weightSoFar = 660)
  4. 实例D:(920, 1080](weightSoFar = 920)

从这里我们可以确定每个区间的宽度实际就是:总的平均响应时间 - 实例的平均响应时间,所以服务实例的平均响应时间越短、权重区间的宽度就越大,服务实例被选中的概率就越高。

这些区间边界的开闭如何确定?区间在哪里使用?

2、权重的使用

我们知道Ribbon负载均衡算法体现在IRule的choose(Object key)方法中,而choose(Object key)方法中又会调用choose(ILoadBalancer lb, Object key)方法,所以我们只需要看WeightedResponseTimeRule的choose(ILoadBalancer lb, Object key)方法:

方法的核心流程如下:

  1. 如果服务实例的最大权重值 < 0.001 或者服务的实例个数发生变更,则采用父类RoundRobinRule做轮询负载;
  2. 否则,利用Random函数生成一个随机数randomWeight,然后遍历权重列表,找到第一个权重值大于等于随机数randomWeight的列表索引下标,然后拿当前权重列表的索引值去服务实例列表中获取具体实例。

1)权重区间问题?

正常每个区间都为(x, y],但是第一个实例和最后一个实例不同:

  1. 由于随机数的最小取值可以为0,所以第一个实例的下限是闭区间;
  2. 随机数的最大值取不到最大权重值,所以最后一个实例的上限是开区间;
网站建设定制开发 软件系统开发定制 定制软件开发 软件开发定制 定制app开发 app开发定制 app开发定制公司 电商商城定制开发 定制小程序开发 定制开发小程序 客户管理系统开发定制 定制网站 定制开发 crm开发定制 开发公司 小程序开发定制 定制软件 收款定制开发 企业网站定制开发 定制化开发 android系统定制开发 定制小程序开发费用 定制设计 专注app软件定制开发 软件开发定制定制 知名网站建设定制 软件定制开发供应商 应用系统定制开发 软件系统定制开发 企业管理系统定制开发 系统定制开发